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1 Departamento de Matemática Aplicada, EUIT de Telecomunicación, Universidad Politécnica de
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Abstract
We announce two new structures associated with the Camassa–Holm (CH)
equation: a Lie algebra of nonlocal symmetries, and a Darboux transformation
for this important equation, which we construct using only our symmetries. We
also extend our results to the associated Camassa–Holm equation introduced
by J Schiff (1998 Physica D 121 24–43).

PACS numbers: 02.20.Tw, 02.30.Ik, 02.60.Lj, 47.10.−g

1. Introduction

It was shown in [20] that the Camassa–Holm (CH) equation [3, 4],

2uxuxx + uuxxx = ut − uxxt + 3uxu, (1)

is the integrability condition of an overdetermined sl(2, R)-valued linear problem, and
that it possesses a nonlocal symmetry essentially arising from it. Nonlocal symmetries are
interesting, because it has been observed that they carry information about the existence
of linearizing and Bäcklund/Darboux transformations [2, 13, 14, 21, 24, 25], and also
because they allow us to construct explicit non-trivial solutions [8, 15, 16, 21, 24], a
topic of importance for numerical methods, for instance. It is then natural to continue their
investigation in the ubiquitous case of equation (1). In this work, we identify a whole Lie
algebra of (x, t)-independent nonlocal symmetries for CH and, motivated by previous work
[21, 24], we construct a Darboux transformation for this equation with the help of one of our
symmetries. This is important, since to the best of our knowledge the direct construction of
such a transformation (without using hodographic transformations and/or transformations of
Schrödinger operators as, for instance, in [1, 23]) has been an open problem since Camassa
and Holm’s paper [3] in 1993.
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For completeness, we also identify a Lie algebra of nonlocal symmetries of, and construct
a Darboux transformation for, the associated Camassa–Holm equation (ACH) introduced by
Schiff in [23]. In this case, our transformation coincides with that obtained in [23] by using
loop groups techniques.

We omit most technical details in this paper. They, and further results along these lines,
appear elsewhere [10].

Familiarity with the theory of classical and generalized symmetries, as it appears, for
instance in [14, 17], is assumed throughout.

Notational conventions. Hereafter independent variables are denoted by xi, i =
1, 2, . . . , n, and dependent variables by uα, α = 1, 2, . . . , m. Also, partial derivatives with
respect to xi are indicated by sub-indices, Di stands for the total derivative with respect to xi ,

Di = ∂

∂xi
+

m∑
α=1

∑
#J�0

uα
J i

∂

∂uα
J

, (2)

(in which the unordered k-tuple J = (j1, . . . , jk), 0 � j1, j2, . . . , jk � n indicates
a multi-index of order #J = k, uα

J i = ∂uα
J

/
∂xi), and DJ indicates the composition

DJ = Dj1Dj2 . . . Djk
.

2. Nonlocal symmetries of partial differential equations

Nonlocal symmetries have been studied rigorously by Vinogradov and Krasil’shchik, see
[13, 14, 25]. Here we give only a short summary of their theory; the reader is referred to the
three papers just cited for full details (see also [21, 22] for recent elementary discussions).

We begin with an example appearing already in [25].

Example 1. We consider Burgers’ equation ut = uxx + uux . The expression

G = (2Sx − uS) e

(
−1

2

∫
u dx

)
, (3)

in which S is any function such that St = Sxx , satisfies the following condition: if u is a solution
to Burgers’ equation, the ‘deformation’ u + τG is also a solution to first order in τ , that is, G
formally satisfies the linearized Burgers equation. One way to make this observation rigorous
would be to consider an extra dependent variable γ 1 such that γ 1

x = u and γ 1
t = ux + (1/2)u2.

Then, we can write (3) as G = (2Sx − uS) exp
(− 1

2γ 1
)
, so that G becomes ‘local’ and could

perhaps be considered as the characteristic of a local symmetry for the ‘augmented’ system

ut = uxx + uux, γ 1
x = u, γ 1

t = ux + (1/2)u2. (4)

But then, in order to formalize this idea, we also need to consider the infinitesimal variation
of γ 1 as u changes to u + τG. These remarks motivate the following two definitions.

Definition 1. Let N be a non-zero integer. An N-dimensional covering π of a (system of)
partial differential equation(s) �a = 0, a = 1, . . . , k, is a pair

π = ({γ b : b = 1, . . . , N}; {Xib : b = 1, . . . , N; i = 1, . . . , n}) (5)

of variables γ b and smooth functions Xib depending on xi, uα, γ b and a finite number of
partial derivatives of uα , such that the equations,

∂γ b

∂xi
= Xib, (6)

are compatible whenever uα(xi) is a solution to �a = 0.

2
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We usually write π = (γ b;Xib) instead of (5). Generalizing example 1, we consider
the variables γb as new dependent variables, the ‘nonlocal variables’ of the theory.
Equation (6) then states how they relate to the original variables uα . In example 1, setting
x1 = x and x2 = t , we have N = 1, X11 = u,X21 = ux + (1/2)u2, and the last two equations
of (4) correspond to equation (6).

We define nonlocal symmetries as follows (compare [14, pp 249–50]).

Definition 2. Let �a = 0, a = 1, . . . , k, be a system of partial differential equations, and let
π = (γ b;Xib) be a covering of �a = 0. A nonlocal π -symmetry of �a = 0 is a generalized
symmetry,

X =
∑

i

ξ i ∂

∂xi
+

∑
α

φα ∂

∂uα
+

∑
b

ϕb ∂

∂γ b
,

of the augmented system

�a = 0,
∂γ b

∂xi
= Xib. (7)

Thus, in order to find nonlocal π -symmetries, we proceed exactly as in the local case
considered, for instance, in Olver’s treatise [17, chapter 5]: we need to check the conditions
[14], [17, p 290]

prX(�a) = 0, and prX

(
∂γ b

∂xi
− Xib

)
= 0, (8)

in which

prX =
∑

i

ξ i ∂

∂xi
+

∑
α,J

φα
J

∂

∂uα
J

+
∑
b,J

ϕb
J

∂

∂γ b
J

and

φα
J = DJ

(
φα −

∑
i

ξ iuα
i

)
+

∑
i

ξ iuα
J i, and ϕb

J = DJ

(
ϕb −

∑
i

ξ iγ b
i

)
+

∑
i

ξ iγ b
J i .

Now, as explained in [17, p 291], it is enough to consider ‘evolutionary’ vector fields X
of the form

X =
m∑

α=1

Gα ∂

∂uα
+

N∑
b=1

Hb ∂

∂γ b
, (9)

and it is well known (see, for instance, [17, p 307] and also [10, 21] for elementary discussions
within the present framework) that in this case the generalized symmetry conditions (8) say that
the infinitesimal deformation uα �→ uα + τGα satisfies the system of equations �a = 0 to first
order in the deformation parameter τ , and that the infinitesimal deformation γ b �→ γ b + τHb

satisfies the compatible system (6) to first order in τ . Thus, we have completely formalized
our example 1.

Corollary 1. If uα
0 (xi) and γ b

0 (xi) are solutions to the augmented system (7), the solution to
the Cauchy problem

∂uα

∂τ
= Gα,

∂γ b

∂τ
= Hb,

uα(xi, 0) = uα
0 (xi), γb(x

i, 0) = γ b
0 (xi),

3
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is a one-parameter family of solutions to the augmented system (7). In particular, nonlocal
π -symmetries send solutions to the system �a = 0 to solutions of the same system.

We finish this section with a computational note: since we are allowed to replace all
derivatives of γb appearing in (9) by means of equations (6), see [17, p 292], we can assume
without loss of generality that the coefficients Gα and Hb of the vector field (9) depend only
on xi, uα , finite numbers of derivatives of uα , and the new variables γ b. This simplification is
crucial for obtaining the classification results we present next.

3. Nonlocal symmetries for the CH and ACH equations

We write the CH equation (1) as a system of equations for two dependent variables m and u:

m = uxx − u, mt = −mxu − 2mux. (10)

Our first theorem is [20]

Theorem 1. The system of first-order equations,

γx = m − 1

2λ
γ 2 +

1

2
λ, γt = λ

(
ux − γ − 1

λ
uγ

)
x

, (11)

is completely integrable on solutions to (10) and therefore it determines a pseudo-potential
γ for the CH equation. Moreover, the following two systems of equations are compatible
whenever u(x, t) and m(x, t) are solutions to (10):

δx = γ, δt = λ

(
ux − γ − 1

λ
uγ

)
(12)

and

βx = m eδ/λ, βt = eδ/λ

(
−1

2
γ 2 +

1

2
λ2 − um

)
. (13)

Theorem 1 can be checked by direct computations. The system (11) is the ‘Riccati form’
of the linear problem associated with the CH equation (10) which we mentioned in section 1
(see [20] and the classical paper by Chen [5]); equations (12) and (13) determine (sequences
of) conservation laws, see [20, 10].

The systems of equations (11)–(13) allow us to define a three-dimensional covering
π of the CH equation, the nonlocal variables are γ , δ and β. We now classify nonlocal
π -symmetries.

Theorem 2. The first-order generalized symmetries of the augmented CH system (10)–(13),
represented by vector fields (9), with Gα and Hb being functions of m,u, γ , δ, β, mx, ux and
ut only, are linear combinations of

V1 = (2mux + umx)
∂

∂m
− ut

∂

∂u
+

(
λ2

2
− λu

2
+ um − γ 2

2
− uγ 2

2λ
+ γ ux

)
∂

∂γ

+ (λγ + uγ − λux)
∂

∂δ
− 1

2
eδ/λ(λ2 − 2um − γ 2)

∂

∂β
, (14)

V2 = mx

∂

∂m
+ ux

∂

∂u
+

(
λ

2
+ m − γ 2

2λ

)
∂

∂γ
+ γ

∂

∂δ
+ eδ/λm

∂

∂β
, (15)

V3 = ∂

∂δ
+

β

λ

∂

∂β
, (16)

4
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V4 = ∂

∂β
, (17)

V5 = eδ/λ

(
2mγ

λ
+ mx

)
∂

∂m
+ eδ/λγ

∂

∂u
+ eδ/λm

∂

∂γ
+ β

∂

∂δ
+

(
e2δ/λm +

β2

2λ

)
∂

∂β
. (18)

Consequently, these vector fields are nonlocal π -symmetries of the CH equation.

Theorem 2 is proven via extensive symbolic computations carried out with the help of
Mathematica software written by the authors [9].

Corollary 2. The five nonlocal π -symmetries (14)–(18) generate a Lie algebra with the
commutator table:

V1 V2 V3 V4 V5

V1

V2

V3 − 1
λ
V4

1
λ
V5

V4
1
λ
V4 V3

V5 − 1
λ
V5 −V3

.

We stress the fact that this Lie algebra exists because we work on a fixed covering of the
CH equation: we cannot expect the ‘space of all nonlocal symmetries’ of a given equation to
possess a Lie algebra structure; see [13] and also [18, 19].

We now consider the ACH equation introduced by Schiff in [23] and further discussed in
[7, 11, 12]. Set

p =
√

2m, dy = p dx − pu dt and dT = dt, (19)

and replace in equation (10). We find Schiff’s ACH equation

pT = −p2uy, u = − p2

2
−

(
pT

p

)
y

p. (20)

We have three results analogous to those obtained for CH.

Proposition 1. The ACH equation (20) admits a pseudo-potential γ determined by the
compatible equations

γy = − 1

2λp
γ 2 +

p

2
+

λ

2p
, γT = γ 2

2
+

pT

p
γ + λu − 1

2
λ2. (21)

Moreover, the following two systems of equations are compatible whenever p(y, T ) and
u(y, T ) satisfy (20):

δy = γ

p
, δT = λ

(
−pT

p
− γ

)
, (22)

and

βy = p

2
eδ/λ, βT = 1

2
(−γ 2 + λ2) eδ/λ. (23)

5
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Theorem 3. The first-order generalized symmetries of the augmented associated CH system
(20)–(23), represented by vector fields (9), with Gα and Hb being functions of the variables
p, u, γ , δ, β, py, uy, uT only, are linear combinations of

W1 = −p2uy

∂

∂p
+ uT

∂

∂u
−

(
λ2

2
− λu − γ 2

2
+ pγuy

)
∂

∂γ

− λ(γ − puy)
∂

∂δ
+

1

2
eδ/λ(λ2 − γ 2)

∂

∂β
, (24)

W2 = py

∂

∂p
+ uy

∂

∂u
+

(
λ

2p
+

p

2
− γ 2

2λp

)
∂

∂γ
+

γ

p

∂

∂δ
+

1

2
eδ/λp

∂

∂β
, (25)

W3 = λ
∂

∂δ
+ β

∂

∂β
, (26)

W4 = ∂

∂β
, (27)

W5 = 2 eδ/λpγ
∂

∂p
+ 2 eδ/λλ(γ − puy)

∂

∂u
− eδ/λ(λ2 − γ 2)

∂

∂γ

− 2λ(eδ/λγ − β)
∂

∂δ
+ β2 ∂

∂β
. (28)

Consequently, these vector fields are nonlocal symmetries of the ACH equation.

Corollary 3. The five nonlocal symmetries (24)–(28) generate a Lie algebra with the
commutator table:

W1 W2 W3 W4 W5

W1

W2

W3 −W4 W5

W4 W4 2W3

W5 −W5 −2W3

.

4. Applications

The crucial fact about the symmetries appearing in theorems 2 and 3 is that they can be explicitly
integrated. Note that symmetries (14), (15), (24) and (25) correspond to translations, while
(16), (17), (26) and (27) correspond to ‘gauge transformations’ of the nonlocal variables. We
concentrate therefore in (18) and (28). The flow of the vector field (18) is determined by the
following equations [20, 10]:

∂x

∂τ
= − eδ(τ,η)/λ, (29)

∂m

∂τ
= 2

λ
γ (τ, η)m(τ, η) eδ(τ,η)/λ, (30)

∂γ

∂τ
= eδ(τ,η)/λ

(
1

2λ
γ (τ, η)2 − 1

2
λ

)
, (31)

∂δ

∂τ
= β(τ, η) − γ (τ, η) eδ(τ,η)/λ, (32)

6
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∂β

∂τ
= 1

2λ
β(τ, η)2, (33)

in which τ represents a flow parameter. There is no need to consider an equation for u(τ): it
is proven in [22] that u(τ) is in fact determined by (29)–(33).

Proposition 2. The initial value problem (29)–(33) with initial conditions β0 = β(0, η), γ0 =
γ (0, η), δ0 = δ(0, η),m0 = m(0, η) and x0 = x(0, η) = η has the solution

β(τ, η) = 1

B(η)
2λβ0, (34)

γ (τ, η) = 1

B(η)
[γ0B(η) + τeδ0/λA+(η)A−(η)], (35)

δ(τ, η) = λ ln

∣∣∣∣ 4λ2 eδ0/λ

(B(η) + τeδ0/λA+(η))(B(η) + τeδ0/λA−(η))

∣∣∣∣ , (36)

m(τ, η) = 1

B(η)4
[B(η) + τeδ0/λA−(η)]2[B(η) + τeδ0/λA+(η)]2m0, (37)

x(τ, η) = η + ln

∣∣∣∣B(η) + τ eδ0/λA−(η)

B(η) + τeδ0/λA+(η)

∣∣∣∣ , (38)

in which the functions B,A+ and A− are given by

B(η) = −τβ0 + 2λ, A+(η) = γ0 + λ, A−(η) = γ0 − λ. (39)

This proposition appears in [20]. We remark that it allows us to construct explicit families of
solutions to the interesting CH equation. Indeed, it contains a Darboux transformation. Let us
assume that the ‘old’ independent variables are η and t. Reasoning as in [24] (see also [21])
we have

Theorem 4. The CH equation (10), understood as an equation for m, is invariant under the
transformation η �→ x and m(η, t) �→ m̄(x, t), in which

x = x(η, t) = η + ln

⎡
⎣1 − λ

B

((Bη

m

)
η
− Bη

m

)
1 − λ

B

((Bη

m

)
η

+ Bη

m

)
⎤
⎦ , (40)

and m̄(x, t) is obtained by inverting (40) and replacing into

m̄ = exp [2 (x(η, t) − η)]

[
1 − λ

B

((
Bη

m

)
η

+
Bη

m

)]4

m. (41)

In equations (40) and (41), B = B(η) = −τβ(η, t) + 2λ, the functions m(η, t) and β(η, t)

are related by

m = λ
∂2

∂η2
ln

(
βη

m

)
+

λ

2

[
∂

∂η
ln

(
βη

m

)]2

− λ

2
, (42)

and β(η, t) is a solution to the equation obtained from replacing (42) into

βt = βη

m

(
−λ2

2

[
∂

∂η
ln

(
βη

m

)]2

+
λ2

2
− um

)
. (43)

7
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In the case of the ACH equation (20), the foregoing theory allows us to obtain two Darboux
transforms. First, we consider the pseudo-potential γ (y, T ) determined by equations (21).
Computing p(y, T ) from the first equation in (21) and replacing into the equation for γT , we
find an equation for γ . Proceeding as in Chen [5] and Chern and Tenenblat [6], we study the
discrete symmetries of this latter equation and we find

Proposition 3. If γ (y, T ) is determined by equations (21), and p(y, T ) is a solution to the
ACH equation (20), then so is

p(y, T ) = p(y, T ) − 2
∂γ

∂y
(y, T ).

This transformation was found by Schiff in [23] using loop groups techniques, and it has
been re-derived by Hone from a relationship between KdV and ACH found by him in [11].
The fact that it depends only on the existence of a quadratic pseudo-potential for ACH is of
some interest.

Now, the flow of the vector field (28) with initial conditions u(y, T , 0) = u0, p(y, T , 0) =
p0, γ (y, T , 0) = γ0, δ(y, T , 0) = δ0 and β(y, T , 0) = β0 is

β(τ) = β0

1 − τβ0
, (44)

γ (τ) = τ
(
λ2ω0 − ω0γ

2
0 + γ0β0

) − γ0

τβ0 − 1
, (45)

δ(τ ) = δ0 − λ ln[(1 − τβ0 + ω0γ0τ − τλω0)(1 − τβ0 + ω0γ0τ + τλω0)], (46)

p(τ) = p0(1 − τβ0 + ω0γ0τ − τλω0)(1 − τβ0 + ω0γ0τ + τλω0)

(−1 + τβ0)2
, (47)

in which ω0 = exp(δ0/λ). As in the CH equation case, we do not calculate explicitly u(τ),
since this function is completely determined by p(τ), γ (τ ), δ(τ ) and β(τ); see [10]. These
formulae yield whole families of non-trivial solutions to the ACH equation (cf Hone [11] for
another construction of solutions to ACH). Moreover, they imply

Proposition 4. Assume that p(y, T ) solves the ACH equation (20), and that β(y, T ) is a
solution to

βT

βy

= −γ 2 + λ2

p
, (48)

in which γ is a solution to the compatible system (21). Then, the function p(y, T ) given by

p = p

(
−1 +

2τλp

−1 + τβ

(
βy

p

)
y

)2

− 4λ2τ 2

(−1 + τβ)2

β2
y

p
(49)

also solves (20).

We note that the first equation in (21) implies that equation (48) can be written as

βT

βy

= −λ(p − 2γy),

and that proposition 3 says that p̂ = p − 2γy is a new solution to the ACH equation. We
therefore interpret proposition 4 as providing us with a nonlinear superposition rule for ACH.

8
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